3.2.100 \(\int \frac {(d+e x^2)^3 (a+b \log (c x^n))}{x^3} \, dx\) [200]

Optimal. Leaf size=131 \[ -\frac {b d^3 n}{4 x^2}-\frac {3}{4} b d e^2 n x^2-\frac {1}{16} b e^3 n x^4-\frac {3}{2} b d^2 e n \log ^2(x)-\frac {d^3 \left (a+b \log \left (c x^n\right )\right )}{2 x^2}+\frac {3}{2} d e^2 x^2 \left (a+b \log \left (c x^n\right )\right )+\frac {1}{4} e^3 x^4 \left (a+b \log \left (c x^n\right )\right )+3 d^2 e \log (x) \left (a+b \log \left (c x^n\right )\right ) \]

[Out]

-1/4*b*d^3*n/x^2-3/4*b*d*e^2*n*x^2-1/16*b*e^3*n*x^4-3/2*b*d^2*e*n*ln(x)^2-1/2*d^3*(a+b*ln(c*x^n))/x^2+3/2*d*e^
2*x^2*(a+b*ln(c*x^n))+1/4*e^3*x^4*(a+b*ln(c*x^n))+3*d^2*e*ln(x)*(a+b*ln(c*x^n))

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {272, 45, 2372, 12, 14, 2338} \begin {gather*} -\frac {d^3 \left (a+b \log \left (c x^n\right )\right )}{2 x^2}+3 d^2 e \log (x) \left (a+b \log \left (c x^n\right )\right )+\frac {3}{2} d e^2 x^2 \left (a+b \log \left (c x^n\right )\right )+\frac {1}{4} e^3 x^4 \left (a+b \log \left (c x^n\right )\right )-\frac {b d^3 n}{4 x^2}-\frac {3}{2} b d^2 e n \log ^2(x)-\frac {3}{4} b d e^2 n x^2-\frac {1}{16} b e^3 n x^4 \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((d + e*x^2)^3*(a + b*Log[c*x^n]))/x^3,x]

[Out]

-1/4*(b*d^3*n)/x^2 - (3*b*d*e^2*n*x^2)/4 - (b*e^3*n*x^4)/16 - (3*b*d^2*e*n*Log[x]^2)/2 - (d^3*(a + b*Log[c*x^n
]))/(2*x^2) + (3*d*e^2*x^2*(a + b*Log[c*x^n]))/2 + (e^3*x^4*(a + b*Log[c*x^n]))/4 + 3*d^2*e*Log[x]*(a + b*Log[
c*x^n])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 2338

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]

Rule 2372

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = I
ntHide[x^m*(d + e*x^r)^q, x]}, Dist[a + b*Log[c*x^n], u, x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]]
 /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] &&  !(EqQ[q, 1] && EqQ[m, -1])

Rubi steps

\begin {align*} \int \frac {\left (d+e x^2\right )^3 \left (a+b \log \left (c x^n\right )\right )}{x^3} \, dx &=-\frac {1}{4} \left (\frac {2 d^3}{x^2}-6 d e^2 x^2-e^3 x^4-12 d^2 e \log (x)\right ) \left (a+b \log \left (c x^n\right )\right )-(b n) \int \frac {-2 d^3+6 d e^2 x^4+e^3 x^6+12 d^2 e x^2 \log (x)}{4 x^3} \, dx\\ &=-\frac {1}{4} \left (\frac {2 d^3}{x^2}-6 d e^2 x^2-e^3 x^4-12 d^2 e \log (x)\right ) \left (a+b \log \left (c x^n\right )\right )-\frac {1}{4} (b n) \int \frac {-2 d^3+6 d e^2 x^4+e^3 x^6+12 d^2 e x^2 \log (x)}{x^3} \, dx\\ &=-\frac {1}{4} \left (\frac {2 d^3}{x^2}-6 d e^2 x^2-e^3 x^4-12 d^2 e \log (x)\right ) \left (a+b \log \left (c x^n\right )\right )-\frac {1}{4} (b n) \int \left (\frac {-2 d^3+6 d e^2 x^4+e^3 x^6}{x^3}+\frac {12 d^2 e \log (x)}{x}\right ) \, dx\\ &=-\frac {1}{4} \left (\frac {2 d^3}{x^2}-6 d e^2 x^2-e^3 x^4-12 d^2 e \log (x)\right ) \left (a+b \log \left (c x^n\right )\right )-\frac {1}{4} (b n) \int \frac {-2 d^3+6 d e^2 x^4+e^3 x^6}{x^3} \, dx-\left (3 b d^2 e n\right ) \int \frac {\log (x)}{x} \, dx\\ &=-\frac {3}{2} b d^2 e n \log ^2(x)-\frac {1}{4} \left (\frac {2 d^3}{x^2}-6 d e^2 x^2-e^3 x^4-12 d^2 e \log (x)\right ) \left (a+b \log \left (c x^n\right )\right )-\frac {1}{4} (b n) \int \left (-\frac {2 d^3}{x^3}+6 d e^2 x+e^3 x^3\right ) \, dx\\ &=-\frac {b d^3 n}{4 x^2}-\frac {3}{4} b d e^2 n x^2-\frac {1}{16} b e^3 n x^4-\frac {3}{2} b d^2 e n \log ^2(x)-\frac {1}{4} \left (\frac {2 d^3}{x^2}-6 d e^2 x^2-e^3 x^4-12 d^2 e \log (x)\right ) \left (a+b \log \left (c x^n\right )\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 115, normalized size = 0.88 \begin {gather*} \frac {1}{16} \left (-\frac {4 b d^3 n}{x^2}-12 b d e^2 n x^2-b e^3 n x^4-\frac {8 d^3 \left (a+b \log \left (c x^n\right )\right )}{x^2}+24 d e^2 x^2 \left (a+b \log \left (c x^n\right )\right )+4 e^3 x^4 \left (a+b \log \left (c x^n\right )\right )+\frac {24 d^2 e \left (a+b \log \left (c x^n\right )\right )^2}{b n}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x^2)^3*(a + b*Log[c*x^n]))/x^3,x]

[Out]

((-4*b*d^3*n)/x^2 - 12*b*d*e^2*n*x^2 - b*e^3*n*x^4 - (8*d^3*(a + b*Log[c*x^n]))/x^2 + 24*d*e^2*x^2*(a + b*Log[
c*x^n]) + 4*e^3*x^4*(a + b*Log[c*x^n]) + (24*d^2*e*(a + b*Log[c*x^n])^2)/(b*n))/16

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.31, size = 4039, normalized size = 30.83

method result size
risch \(\text {Expression too large to display}\) \(4039\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^3*(a+b*ln(c*x^n))/x^3,x,method=_RETURNVERBOSE)

[Out]

-1/4*b*(-e^3*x^6-6*d*e^2*x^4-12*d^2*e*ln(x)*x^2-9*d^2*e*x^2+2*d^3)/x^2*ln(x^n)-1/16*(-8*Pi^2*b^2*d^3*csgn(I*c*
x^n)^6+96*I*ln(x)*Pi*b^2*d^2*e*n*x^2*csgn(I*x^n)*csgn(I*c*x^n)^2-96*ln(x)*Pi^2*b^2*d^2*e*x^2*csgn(I*c)*csgn(I*
x^n)^2*csgn(I*c*x^n)^3+192*ln(x)*Pi^2*b^2*d^2*e*x^2*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)^4+48*ln(x)*Pi^2*b^2*d^
2*e*x^2*csgn(I*c)^2*csgn(I*x^n)^2*csgn(I*c*x^n)^2+96*Pi^2*b^2*d*e^2*x^4*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)^4+
48*I*Pi*b^2*d^2*e*n*x^2*csgn(I*c)*csgn(I*c*x^n)^2*ln(x)^2-72*I*Pi*b^2*d^2*e*n*x^2*csgn(I*c)*csgn(I*x^n)*csgn(I
*c*x^n)-96*I*ln(x)*Pi*b^2*d^2*e*n*x^2*csgn(I*c*x^n)^3-8*Pi^2*b^2*e^3*x^6*csgn(I*c)*csgn(I*c*x^n)^5+4*Pi^2*b^2*
e^3*x^6*csgn(I*x^n)^2*csgn(I*c*x^n)^4-8*Pi^2*b^2*e^3*x^6*csgn(I*x^n)*csgn(I*c*x^n)^5-8*Pi^2*b^2*d^3*csgn(I*c)^
2*csgn(I*x^n)^2*csgn(I*c*x^n)^2-96*I*Pi*a*b*d*e^2*x^4*csgn(I*x^n)*csgn(I*c*x^n)^2-192*ln(x)*a^2*d^2*e*x^2+72*l
n(c)*b^2*d*e^2*n*x^4-192*ln(c)*a*b*d*e^2*x^4+144*ln(c)*b^2*d^2*e*n*x^2-288*ln(c)*a*b*d^2*e*x^2-192*ln(x)*ln(c)
^2*b^2*d^2*e*x^2-24*b^2*d^2*e*n^2*x^2*ln(x)^2-36*I*Pi*b^2*d*e^2*n*x^4*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+8*ln
(c)*b^2*d^3*n+64*ln(c)*a*b*d^3-16*ln(c)^2*b^2*e^3*x^6+36*Pi^2*b^2*d^2*e*x^2*csgn(I*x^n)^2*csgn(I*c*x^n)^4-72*P
i^2*b^2*d^2*e*x^2*csgn(I*x^n)*csgn(I*c*x^n)^5+4*Pi^2*b^2*e^3*x^6*csgn(I*c)^2*csgn(I*x^n)^2*csgn(I*c*x^n)^2+72*
I*Pi*b^2*d^2*e*n*x^2*csgn(I*c)*csgn(I*c*x^n)^2+32*a^2*d^3+192*ln(x)*ln(c)*b^2*d^2*e*n*x^2-384*ln(x)*ln(c)*a*b*
d^2*e*x^2+32*ln(c)^2*b^2*d^3+16*Pi^2*b^2*d^3*csgn(I*c)^2*csgn(I*x^n)*csgn(I*c*x^n)^3+16*Pi^2*b^2*d^3*csgn(I*c)
*csgn(I*x^n)^2*csgn(I*c*x^n)^3-32*Pi^2*b^2*d^3*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)^4-32*I*Pi*ln(c)*b^2*d^3*csg
n(I*c*x^n)^3-4*I*Pi*b^2*d^3*n*csgn(I*c*x^n)^3-32*I*Pi*a*b*d^3*csgn(I*c*x^n)^3-16*a^2*e^3*x^6-4*b^2*d^3*n^2-4*I
*Pi*b^2*e^3*n*x^6*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)-48*I*Pi*b^2*d^2*e*n*x^2*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x
^n)*ln(x)^2+8*a*b*d^3*n-b^2*e^3*n^2*x^6-96*a^2*d*e^2*x^4-144*a^2*d^2*e*x^2-144*I*Pi*ln(c)*b^2*d^2*e*x^2*csgn(I
*c)*csgn(I*c*x^n)^2-96*I*Pi*a*b*d*e^2*x^4*csgn(I*c)*csgn(I*c*x^n)^2+96*I*Pi*a*b*d*e^2*x^4*csgn(I*c*x^n)^3+144*
I*Pi*ln(c)*b^2*d^2*e*x^2*csgn(I*c*x^n)^3+4*I*Pi*b^2*d^3*n*csgn(I*x^n)*csgn(I*c*x^n)^2+32*I*Pi*a*b*d^3*csgn(I*c
)*csgn(I*c*x^n)^2+32*I*Pi*a*b*d^3*csgn(I*x^n)*csgn(I*c*x^n)^2-16*I*Pi*a*b*e^3*x^6*csgn(I*c)*csgn(I*c*x^n)^2-32
*I*Pi*a*b*d^3*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)-16*I*Pi*ln(c)*b^2*e^3*x^6*csgn(I*x^n)*csgn(I*c*x^n)^2+4*I*Pi
*b^2*e^3*n*x^6*csgn(I*c)*csgn(I*c*x^n)^2-8*Pi^2*b^2*d^3*csgn(I*c)^2*csgn(I*c*x^n)^4-192*I*ln(x)*Pi*ln(c)*b^2*d
^2*e*x^2*csgn(I*x^n)*csgn(I*c*x^n)^2+192*I*ln(x)*Pi*a*b*d^2*e*x^2*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+96*I*Pi*
a*b*d*e^2*x^4*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)-192*I*ln(x)*Pi*a*b*d^2*e*x^2*csgn(I*c)*csgn(I*c*x^n)^2+36*Pi
^2*b^2*d^2*e*x^2*csgn(I*c)^2*csgn(I*x^n)^2*csgn(I*c*x^n)^2-72*Pi^2*b^2*d^2*e*x^2*csgn(I*c)^2*csgn(I*x^n)*csgn(
I*c*x^n)^3+96*I*Pi*ln(c)*b^2*d*e^2*x^4*csgn(I*c*x^n)^3-36*I*Pi*b^2*d*e^2*n*x^4*csgn(I*c*x^n)^3+96*I*ln(x)*Pi*b
^2*d^2*e*n*x^2*csgn(I*c)*csgn(I*c*x^n)^2+8*a*b*e^3*n*x^6+144*I*Pi*a*b*d^2*e*x^2*csgn(I*c)*csgn(I*x^n)*csgn(I*c
*x^n)+192*I*ln(x)*Pi*a*b*d^2*e*x^2*csgn(I*c*x^n)^3+16*Pi^2*b^2*d^3*csgn(I*c)*csgn(I*c*x^n)^5-8*Pi^2*b^2*d^3*cs
gn(I*x^n)^2*csgn(I*c*x^n)^4+16*Pi^2*b^2*d^3*csgn(I*x^n)*csgn(I*c*x^n)^5-48*Pi^2*b^2*d*e^2*x^4*csgn(I*c)*csgn(I
*c*x^n)^5+24*Pi^2*b^2*d*e^2*x^4*csgn(I*x^n)^2*csgn(I*c*x^n)^4-48*Pi^2*b^2*d*e^2*x^4*csgn(I*x^n)*csgn(I*c*x^n)^
5+36*Pi^2*b^2*d^2*e*x^2*csgn(I*c)^2*csgn(I*c*x^n)^4+96*I*Pi*ln(c)*b^2*d*e^2*x^4*csgn(I*c)*csgn(I*x^n)*csgn(I*c
*x^n)+16*I*Pi*ln(c)*b^2*e^3*x^6*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)-48*I*Pi*b^2*d^2*e*n*x^2*csgn(I*c*x^n)^3*ln
(x)^2+72*a*b*d*e^2*n*x^4+144*a*b*d^2*e*n*x^2+192*ln(x)*a*b*d^2*e*n*x^2-72*Pi^2*b^2*d^2*e*x^2*csgn(I*c)*csgn(I*
c*x^n)^5+48*ln(x)*Pi^2*b^2*d^2*e*x^2*csgn(I*c*x^n)^6-4*I*Pi*b^2*e^3*n*x^6*csgn(I*c*x^n)^3+16*I*Pi*a*b*e^3*x^6*
csgn(I*c*x^n)^3+4*Pi^2*b^2*e^3*x^6*csgn(I*c*x^n)^6+16*I*Pi*ln(c)*b^2*e^3*x^6*csgn(I*c*x^n)^3+32*I*Pi*ln(c)*b^2
*d^3*csgn(I*c)*csgn(I*c*x^n)^2+32*I*Pi*ln(c)*b^2*d^3*csgn(I*x^n)*csgn(I*c*x^n)^2+4*I*Pi*b^2*d^3*n*csgn(I*c)*cs
gn(I*c*x^n)^2-96*ln(x)*Pi^2*b^2*d^2*e*x^2*csgn(I*x^n)*csgn(I*c*x^n)^5+48*ln(x)*Pi^2*b^2*d^2*e*x^2*csgn(I*c)^2*
csgn(I*c*x^n)^4-96*ln(x)*Pi^2*b^2*d^2*e*x^2*csgn(I*c)*csgn(I*c*x^n)^5+48*ln(x)*Pi^2*b^2*d^2*e*x^2*csgn(I*x^n)^
2*csgn(I*c*x^n)^4+144*I*Pi*a*b*d^2*e*x^2*csgn(I*c*x^n)^3-16*I*Pi*a*b*e^3*x^6*csgn(I*x^n)*csgn(I*c*x^n)^2+96*ln
(c)*b^2*d^2*e*n*x^2*ln(x)^2+96*a*b*d^2*e*n*x^2*ln(x)^2-144*I*Pi*a*b*d^2*e*x^2*csgn(I*x^n)*csgn(I*c*x^n)^2-32*I
*Pi*ln(c)*b^2*d^3*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)-4*I*Pi*b^2*d^3*n*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)-36*
ln(x)*b^2*d^2*e*n^2*x^2-96*ln(x)*Pi^2*b^2*d^2*e*x^2*csgn(I*c)^2*csgn(I*x^n)*csgn(I*c*x^n)^3+48*I*Pi*b^2*d^2*e*
n*x^2*csgn(I*x^n)*csgn(I*c*x^n)^2*ln(x)^2-72*I*Pi*b^2*d^2*e*n*x^2*csgn(I*c*x^n)^3+4*I*Pi*b^2*e^3*n*x^6*csgn(I*
x^n)*csgn(I*c*x^n)^2+36*I*Pi*b^2*d*e^2*n*x^4*csgn(I*c)*csgn(I*c*x^n)^2+36*I*Pi*b^2*d*e^2*n*x^4*csgn(I*x^n)*csg
n(I*c*x^n)^2-12*b^2*d*e^2*n^2*x^4-36*b^2*d^2*e*...

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 129, normalized size = 0.98 \begin {gather*} -\frac {1}{16} \, b n x^{4} e^{3} + \frac {1}{4} \, b x^{4} e^{3} \log \left (c x^{n}\right ) + \frac {1}{4} \, a x^{4} e^{3} - \frac {3}{4} \, b d n x^{2} e^{2} + \frac {3}{2} \, b d x^{2} e^{2} \log \left (c x^{n}\right ) + \frac {3}{2} \, a d x^{2} e^{2} + \frac {3 \, b d^{2} e \log \left (c x^{n}\right )^{2}}{2 \, n} + 3 \, a d^{2} e \log \left (x\right ) - \frac {b d^{3} n}{4 \, x^{2}} - \frac {b d^{3} \log \left (c x^{n}\right )}{2 \, x^{2}} - \frac {a d^{3}}{2 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^3*(a+b*log(c*x^n))/x^3,x, algorithm="maxima")

[Out]

-1/16*b*n*x^4*e^3 + 1/4*b*x^4*e^3*log(c*x^n) + 1/4*a*x^4*e^3 - 3/4*b*d*n*x^2*e^2 + 3/2*b*d*x^2*e^2*log(c*x^n)
+ 3/2*a*d*x^2*e^2 + 3/2*b*d^2*e*log(c*x^n)^2/n + 3*a*d^2*e*log(x) - 1/4*b*d^3*n/x^2 - 1/2*b*d^3*log(c*x^n)/x^2
 - 1/2*a*d^3/x^2

________________________________________________________________________________________

Fricas [A]
time = 0.38, size = 146, normalized size = 1.11 \begin {gather*} \frac {24 \, b d^{2} n x^{2} e \log \left (x\right )^{2} - {\left (b n - 4 \, a\right )} x^{6} e^{3} - 12 \, {\left (b d n - 2 \, a d\right )} x^{4} e^{2} - 4 \, b d^{3} n - 8 \, a d^{3} + 4 \, {\left (b x^{6} e^{3} + 6 \, b d x^{4} e^{2} - 2 \, b d^{3}\right )} \log \left (c\right ) + 4 \, {\left (b n x^{6} e^{3} + 6 \, b d n x^{4} e^{2} + 12 \, b d^{2} x^{2} e \log \left (c\right ) + 12 \, a d^{2} x^{2} e - 2 \, b d^{3} n\right )} \log \left (x\right )}{16 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^3*(a+b*log(c*x^n))/x^3,x, algorithm="fricas")

[Out]

1/16*(24*b*d^2*n*x^2*e*log(x)^2 - (b*n - 4*a)*x^6*e^3 - 12*(b*d*n - 2*a*d)*x^4*e^2 - 4*b*d^3*n - 8*a*d^3 + 4*(
b*x^6*e^3 + 6*b*d*x^4*e^2 - 2*b*d^3)*log(c) + 4*(b*n*x^6*e^3 + 6*b*d*n*x^4*e^2 + 12*b*d^2*x^2*e*log(c) + 12*a*
d^2*x^2*e - 2*b*d^3*n)*log(x))/x^2

________________________________________________________________________________________

Sympy [A]
time = 1.54, size = 209, normalized size = 1.60 \begin {gather*} \begin {cases} - \frac {a d^{3}}{2 x^{2}} + \frac {3 a d^{2} e \log {\left (c x^{n} \right )}}{n} + \frac {3 a d e^{2} x^{2}}{2} + \frac {a e^{3} x^{4}}{4} - \frac {b d^{3} n}{4 x^{2}} - \frac {b d^{3} \log {\left (c x^{n} \right )}}{2 x^{2}} + \frac {3 b d^{2} e \log {\left (c x^{n} \right )}^{2}}{2 n} - \frac {3 b d e^{2} n x^{2}}{4} + \frac {3 b d e^{2} x^{2} \log {\left (c x^{n} \right )}}{2} - \frac {b e^{3} n x^{4}}{16} + \frac {b e^{3} x^{4} \log {\left (c x^{n} \right )}}{4} & \text {for}\: n \neq 0 \\\left (a + b \log {\left (c \right )}\right ) \left (- \frac {d^{3}}{2 x^{2}} + 3 d^{2} e \log {\left (x \right )} + \frac {3 d e^{2} x^{2}}{2} + \frac {e^{3} x^{4}}{4}\right ) & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**3*(a+b*ln(c*x**n))/x**3,x)

[Out]

Piecewise((-a*d**3/(2*x**2) + 3*a*d**2*e*log(c*x**n)/n + 3*a*d*e**2*x**2/2 + a*e**3*x**4/4 - b*d**3*n/(4*x**2)
 - b*d**3*log(c*x**n)/(2*x**2) + 3*b*d**2*e*log(c*x**n)**2/(2*n) - 3*b*d*e**2*n*x**2/4 + 3*b*d*e**2*x**2*log(c
*x**n)/2 - b*e**3*n*x**4/16 + b*e**3*x**4*log(c*x**n)/4, Ne(n, 0)), ((a + b*log(c))*(-d**3/(2*x**2) + 3*d**2*e
*log(x) + 3*d*e**2*x**2/2 + e**3*x**4/4), True))

________________________________________________________________________________________

Giac [A]
time = 2.30, size = 160, normalized size = 1.22 \begin {gather*} \frac {4 \, b n x^{6} e^{3} \log \left (x\right ) - b n x^{6} e^{3} + 4 \, b x^{6} e^{3} \log \left (c\right ) + 24 \, b d n x^{4} e^{2} \log \left (x\right ) + 24 \, b d^{2} n x^{2} e \log \left (x\right )^{2} + 4 \, a x^{6} e^{3} - 12 \, b d n x^{4} e^{2} + 24 \, b d x^{4} e^{2} \log \left (c\right ) + 48 \, b d^{2} x^{2} e \log \left (c\right ) \log \left (x\right ) + 24 \, a d x^{4} e^{2} + 48 \, a d^{2} x^{2} e \log \left (x\right ) - 8 \, b d^{3} n \log \left (x\right ) - 4 \, b d^{3} n - 8 \, b d^{3} \log \left (c\right ) - 8 \, a d^{3}}{16 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^3*(a+b*log(c*x^n))/x^3,x, algorithm="giac")

[Out]

1/16*(4*b*n*x^6*e^3*log(x) - b*n*x^6*e^3 + 4*b*x^6*e^3*log(c) + 24*b*d*n*x^4*e^2*log(x) + 24*b*d^2*n*x^2*e*log
(x)^2 + 4*a*x^6*e^3 - 12*b*d*n*x^4*e^2 + 24*b*d*x^4*e^2*log(c) + 48*b*d^2*x^2*e*log(c)*log(x) + 24*a*d*x^4*e^2
 + 48*a*d^2*x^2*e*log(x) - 8*b*d^3*n*log(x) - 4*b*d^3*n - 8*b*d^3*log(c) - 8*a*d^3)/x^2

________________________________________________________________________________________

Mupad [B]
time = 3.64, size = 163, normalized size = 1.24 \begin {gather*} \ln \left (c\,x^n\right )\,\left (\frac {\frac {3\,b\,e^3\,x^6}{4}+3\,b\,d\,e^2\,x^4}{x^2}-\frac {\frac {b\,d^3}{2}+\frac {3\,b\,d^2\,e\,x^2}{2}+\frac {3\,b\,d\,e^2\,x^4}{2}+\frac {b\,e^3\,x^6}{2}}{x^2}\right )-\frac {\frac {a\,d^3}{2}+\frac {b\,d^3\,n}{4}}{x^2}+\ln \left (x\right )\,\left (3\,a\,d^2\,e+\frac {3\,b\,d^2\,e\,n}{2}\right )+\frac {e^3\,x^4\,\left (4\,a-b\,n\right )}{16}+\frac {3\,d\,e^2\,x^2\,\left (2\,a-b\,n\right )}{4}+\frac {3\,b\,d^2\,e\,{\ln \left (c\,x^n\right )}^2}{2\,n} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((d + e*x^2)^3*(a + b*log(c*x^n)))/x^3,x)

[Out]

log(c*x^n)*(((3*b*e^3*x^6)/4 + 3*b*d*e^2*x^4)/x^2 - ((b*d^3)/2 + (b*e^3*x^6)/2 + (3*b*d^2*e*x^2)/2 + (3*b*d*e^
2*x^4)/2)/x^2) - ((a*d^3)/2 + (b*d^3*n)/4)/x^2 + log(x)*(3*a*d^2*e + (3*b*d^2*e*n)/2) + (e^3*x^4*(4*a - b*n))/
16 + (3*d*e^2*x^2*(2*a - b*n))/4 + (3*b*d^2*e*log(c*x^n)^2)/(2*n)

________________________________________________________________________________________